Домашняя страница ГорЫнаДомашняя страница ГорЫнаДомашняя страница ГорЫнаДомашняя страница ГорЫнаГостевая книгаКарта сайтаНаписать письмо

Интересное
Новости науки и техники
Планета типа 13
Анекдоты
Полезные советы
Разделы
Кто я есть
Мое творчество
Креатифф
Интересное
Гостевая
Чат
Карта сайта
Поиск по сайту
Ссылки
О нас знают





Прошли первые успешные испытания "нейропыли"

08 августа 2016 года

Ryan Neely / UC Berkeley   Американские ученые успешно испытали работу "нейропыли" в нервах и мускулах крысы. В будущем такие микроскопические, питающиеся ультразвуком беспроводные датчики позволят вести наблюдения по всему организму, в том числе и регистрировать активность нейронов глубоко в мозге. Об экспериментах с прототипами in vivo рассказывает статья, опубликованная журналом Neuron.

   Идею использования ультразвуковой нейропыли (neurodust) для наблюдения за активностью клеток мозга Мишель Махарбиз (Michel Maharbiz) и его коллеги из Калифорнийского университета в Беркли озвучили в 2013 г. Авторы описали концепцию устройства, состоящего из тысяч свободно плавающих независимых датчиков размерами от 10 до 100 мкм, а также размещенного субкраниально модуля для обеспечения их энергией и связью посредством обмена ультразвуком. Годом спустя ученые отчитались о первых экспериментах по взаимодействию нейропыли с поддерживающим модулем, а теперь представили первые измерения, проведенные такими датчиками in vivo, в живом организме.

   Каждая "нейропылинка" размерами 3×1 х 0,8 мм изолирована инертной эпоксидной смолой, так что открытыми остаются лишь выходы электродов. Внутри же скрываются миниатюрный транзистор и пьезоэлектрический кристалл, в котором в ответ на механические деформации возникает слабое напряжение. Внешний модуль (плата размерами примерно 6×6 см) каждые 0,1 секунды испускает серии из шести коротких (540 нс) ультразвуковых импульсов, после чего переходит в режим регистрации сигналов, отраженных кристаллами нейропыли.

   Частичное поглощение ультразвуковых волн вызывает деформацию этих кристаллов и создает достаточно энергии для создания тока, текущего через крошечный транзистор и модулируемого внешним сигналом, поступающим с электродов "нейропылинки". Эти модуляции, в свою очередь, влияют на поведение кристалла и, соответственно, на характеристики отраженных волн ультразвука. "Таким образом, форма отраженных ультразвуковых импульсов кодирует электрофизиологический сигнал, который получают имплантированные электроды, и этот сигнал можно реконструировать посредством внешнего устройства", — пишут Мишель Махарбиз и его соавторы.

   Прототипы устройства на центральной нервной системе пока не испытывались. Ученые хирургически имплантировали нейропыль в периферические нервы и скелетную мускулатуру подопытных крыс, собрав данные электронейрографии седалищного нерва и электромиографии икроножной мышцы. Однако это продемонстрировало перспективность решения — прежде всего, использования ультразвука для организации взаимодействия между "нейропылинками" и внешним модулем.

   По подсчетам, проделанным еще в первой статье 2013 г., датчики нейропыли можно уменьшить до примерно 50 мкм – для сравнения, типичный размер животной клетки составляет 10-30 мкм. Это облегчит их внесение в организм и продлит срок жизни. Кроме того, авторы планируют дополнить нейропыль новыми функциями, включая регистрацию химических сигналов, таких как уровень кислорода или определенных гормонов.

Роман Фишман

Источник: N + 1Вернуться назад




Частичная или полная републикация материалов данного сайта и размещение файлов с него без письменного разрешения администрации сайта запрещена.

Кто я есть | Мое творчество | Креатифф | Интересное | Общение

Copyright © 2000-2025 ГорЫн